Numerical Simulation of the Behavior of Toroidal and Spheroidal Multicellular Aggregates in Microfluidic Devices with Microwell and U-Shaped Barrier

نویسندگان

  • Maryam Barisam
  • Mohammad Said Saidi
  • Navid Kashaninejad
  • Raja Vadivelu
  • Nam-Trung Nguyen
چکیده

A microfluidic system provides an excellent platform for cellular studies. Most importantly, a three-dimensional (3D) cell culture model reconstructs more accurately the in vivo microenvironment of tissue. Accordingly, microfluidic 3D cell culture devices could be ideal candidates for in vitro cell culture platforms. In this paper, two types of 3D cellular aggregates, i.e., toroid and spheroid, are numerically studied. The studies are carried out for microfluidic systems containing U-shaped barrier as well as microwell structure. For the first time, we obtain oxygen and glucose concentration distributions inside a toroid aggregate as well as the shear stress on its surface and compare its performance with a spheroid aggregate of the same volume. In particular, we obtain the oxygen concentration distributions in three areas, namely, oxygen-permeable layer, multicellular aggregates and culture medium. Further, glucose concentration distributions in two regions of multicellular aggregates and culture medium are investigated. The results show that the levels of oxygen and glucose in the system containing U-shaped barriers are far more than those in the system containing microwells. Therefore, to achieve high levels of oxygen and nutrients, a system with U-shaped barriers is more suited than the conventional traps, but the choice between toroid and spheroid depends on their volume and orientation. The results indicate that higher oxygen and glucose concentrations can be achieved in spheroid with a small volume as well as in horizontal toroid with a large volume. The vertical toroid has the highest levels of oxygen and glucose concentration while the surface shear stress on its surface is also maximum. These findings can be used as guidelines for designing an optimum 3D microfluidic bioreactor based on the desired levels of oxygen, glucose and shear stress distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Numerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles

Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...

متن کامل

Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage

The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...

متن کامل

Numerical simulation of nanofluid flow over diamond-shaped elements in tandem in laminar and turbulent flow

In this paper, the Al2O3-water nanofluid flow in laminar and turbulent flows inside tubes fitted with diamond-shaped turbulators is numerically modeled. The nanofluid flow is modeled by employing a two-phase mixture method and applying the constant heat flux boundary condition at tube walls. In the results, the effects of different parameters such as the geometry of turbulators, volume fraction...

متن کامل

Numerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks

Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017